Ultrafast and low overhead training symbol based channel estimation in coherent M-QAM single-carrier transmission systems.
نویسندگان
چکیده
We propose a training symbol based channel estimation (TS-EST) algorithm that estimates the 2 × 2 Jones channel matrix. The estimated matrix entries are then used as the initial center taps of the 2 × 2 butterfly equalizer. Employing very few training symbols for TS-EST, ultrafast polarization tracking is achieved and tap update can be initially pursued using the decision-directed least mean squares (DD-LMS) algorithm to mitigate residual intersymbol interference (ISI). We experimentally verify the proposed TS-EST algorithm for 112 Gbps PDM-QPSK and 224 Gbps PDM-16QAM systems using 10 and 40 training symbols for TS-EST, respectively. Steady-state and transient bit error rates (BERs) achieved using the TS-EST algorithm are compared to those obtained using the constant modulus algorithm (CMA) and the training symbol least mean squares (TS-LMS) algorithm and results show that the proposed TS-EST algorithm provides the same steady-state BER with a superior convergence speed. Also, the tolerance of the proposed TS-EST algorithm to laser phase noise and fiber nonlinearity is experimentally verified. Finally, we show by simulation that the superior tracking speed of the TS-EST algorithm allows not only for initial polarization tracking but also for tracking fast polarization transients if four training symbols are periodically sent during steady-state operation with an overhead as low as 0.57%.
منابع مشابه
Experimental Study of a novel adaptive decision- directed channel equalizer in 28 GBaud RGI- DP-CO-OFDM transport systems
We report and experimentally investigate the performance of an adaptive decision-directed channel equalizer (ADDCE) in reduced-guardinterval dual-polarization coherent-optical orthogonal-frequency-divisionmultiplexing (RGI-DP-CO-OFDM) transport systems. ADDCE retrieves an estimation of the phase noise value after an initial decision making stage by extracting and averaging the phase drift of al...
متن کاملFeedforward carrier recovery via pilot-aided transmission for single-carrier systems with arbitrary M-QAM constellations.
We exploit pilot-aided (PA) transmission enabled by single-sideband (SSB) subcarrier modulation of both quadrature signals in the DSP domain to achieve fully feedforward carrier recovery (FFCR) in single-carrier (SC) coherent systems with arbitrary M-QAM constellations. A thorough mathematical description of the proposed PA-FFCR is presented, its linewidth tolerance is assessed by simulations a...
متن کاملTemplate for Papers ECOC 2010
28 Gbaud QPSK and 16-QAM zero-guard-interval (ZGI) CO-OFDM transmission with only 1.34% overhead for OFDM processing is reported. The high tolerance of ZGI CO-OFDM to residual inter-symbol interference and imperfect frame synchronization is also demonstrated. Introduction High spectral efficiency modulation formats have been actively investigated in order to satisfy the ever-increasing demand f...
متن کاملChromatic Dispersion Mitigation in Single Carrier High Speed Coherent Optical Communication Using Digital Signal Processing Techniques
Optical fiber networks have been emerged to be the backbone of global communication infrastructure in present world. But, they are currently experiencing an unprecedented level of stress in order to meet the demand of increasing bandwidth-hungry applications. Moreover signals are frequently subjected to distortion due to optical fiber impairments while being propagating through a fiber optic ca...
متن کاملA MIMO System with Backward Compatibility for OFDM-Based WLANs
Orthogonal frequency division multiplexing (OFDM) has been selected as the basis for the new IEEE 802.11a standard for highspeed wireless local area networks (WLANs). We consider doubling the transmission data rate of the IEEE 802.11a system by using two transmit and two receive antennas. We propose a preamble design for this multi-input multi-output (MIMO) system that is backward compatible wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 20 26 شماره
صفحات -
تاریخ انتشار 2012